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AbstrseL Formation energies of lhe vacancy and sell-interstitial in AI, as well as energies 
of intrinsic, atrinsic and lwin-boundary slacking faults are calculated from first principles. 
The electronic slruclure and form on the aloms are calculated in the lramework o l  the 
augmented plane wave method using the algorithm pmpased by Williams and Soler. 

1. Introduction 

The study of defects in solids is both an intellectual challenge, because the reduced 
symmetry of the problem complicates the analysis, and of technological relevance, 
because some defects may already be present in thermal equilibrium, whereas others 
are easily introduced in the growth or processing (e.g. heating, ion implantation) 
of crystals. Therefore defects are intrinsic to real crystals and determine or modify 
the properties of real materials. For instance, the presence of shallow impurities in 
semiconductors causes the conducting properties of semiconductors and their control 
is the basis of the modem electronics industry. Also, the creation and behaviour 
of vacancies and interstitials rule the mechanism of void formation in pure metals, 
which is one of the prime examples of irradiation damage in metals. Void formation 
in turn causes undesirable embrittlement and/or swelling of, for instance, nuclear 
reactor materials. 

Defects may be classified according to the number of dimensions in which they 
are spatiaUy restricted. One may distinguish between point defects, l i e  vacancies, 
interstitials, and impurities, Yhich are bounded in three dimensions, line defects, l i e  
dislocations, which are bounded in two dimensions, and planar defects, l ie stacking 
faults and grain boundaries, which are restricted only in one dimension. 

Progress has been made in recent years in calculating the macroscopic properties 
of real materials from the quantum mechanical behaviour on the microscopic level 
of atoms and electrons [1,2]. This development will lead to a quantum mechani- 
cal understanding of the mechanical behaviour of solids through atomistic models 
of deformation, fracture and crack propagation. Such atomistic models will not 
necessarily make use of first-principles descriptions of all (also mutual) interactions 
between atoms and electrons. It is more likely that such models will include so called 
empiricalpofertliak to effectively describe interatomic interactions [Z]. Employing em- 
pirical interatomic potentials greatly reduces the computational task compared to a 
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first-principles description, hence the preference for empirical potentials in treating 
complicated models of, for instance, grain boundaries and dislocations. However, 
there will still be a need for first-principles calculations of defect properties. For 
less complicated defem, like vacancies, first-principles calculations provide a way to 
scrutinize the reliability of results obtained using empirical potentials. 

Essential for a quantum mechanical description of defective crystals is the ability 
to accurately compute the forces that the atoms experience. In calculations for semi- 
conductors Hellmann-Feynman forces [3] are routinely obtained by methods using 
pseudopotentials and plane wave expansions of the electronic wavefunctions. In this 
way, accurate phonon frequencies and optimized defect geometries have been ob- 
tained [4,5]. A further development, shown to be feasible by Car and Parrinello [6] 
is the combination of ab initio electronic structure calculations, as mentioned above, 
and the technique of molecular dynamics. In this approach, the forces on the atoms 
calculated from quantum mechanics are used as input for the classical equations 
of motion for the atoms. In contrast to the situation for semiconductors. until re- 
cently there were no formulae available to compute atomic forces in solids which 
are less suited to be treated with pseudopotentials. Soler and Williams have filled 
this void in a recent paper [7] by providing formulae to compute atomic forces in 
the framework of the augmented plane wave (APW) method (using the local-density 
approximation (LDA) to describe exchange and correlation interactions between elec 
trons [1,8]. Moreover, these formulae were implemented in a computer program that 
solves the Schrlidinger equation self-consistently by non-linear optimization by means 
of a (fictitious) first-order equation of motion [9]. 

In the present work, we use the methods and computer codes by Soler and 
Wdliams to calculate from Erst principles formation and migration energies of a wide 
variety of defects in the simple metal aluminium. The rest of the paper is organized 
as follows: in section 2, we brieky discuss the calculational techniques that are used. 
We also present results of test calculations for lattice constant, bulk modulus, and 
phonon frequencies in bulk AI, which establish the reliability of the method for Al. 
In section 3, calculations and results for planar defects are discussed. We obtain the 
energies of intrinsic and extrinsic stacking faults and of the twin boundary in good 
agreement with experiments and, more importantly, with higher accuracy than in the 
experiments. In section 4, we examine the long-standing problem of the formation 
energy of the vacancy using our versatile approach. Other properties of the vacancy 
defect are calculated as well. We furthermore present one of the first studies of 
another simple point defect: the self-interstitial. Our treatment of the vacancy and 
self-interstitial has the advantage over other recent studies [lo, 111 that we include 
relaxation of the atoms around the point defects and that we do not make use of 
pseudopotentials. In the previous studies, the formation energy of the vacancy was 
shown to depend rather heavily on the choice of pseudopotential. Concluding and 
summarizing remarks are found in section 5. 

P J H Denteneer and J M Soler 

2. Calculational methods and test calculations 

In order to self-consistently solve the Schr6dinger equation for the electrons in a 
periodic arrangement of atoms, Car and Parrinello [6] have proposed to treat the 
variational parameters (the coefficients in the expansion of the wavefunctions in plane 
waves) as fictitious dynamical variables. Self-consistency (and total-energy minimiza- 
tion) is then achieved by simulated annealing or by steepest-descent-like methods. 
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In this way, the computation time increases only as N log N with the number of 
plane waves N, as opposed to N2 or N 3  in conventional methods requiring matrix 
diagonalizations. This approach furthermore allows for the simultaneous optimization 
of the atomic geometry by using the quantum mechanical forces on the atoms to do 
molecular dynamics. In the method used in the present paper, which will be described 
more extensively elsewhere [12] the approach of Car and Parrinello is carried through 
in the framework of the APW method. As proposed in [9] a fust-order equation of 
motion is used to govem the time development of the plane wave coefficients C,: 

x C ( H G G , -  ~ ~ o o ~ ) C G ~ ( t )  (1) 
G’ 

where HGG, are matrix elements of the Hamiltonian and c oneelectron energies. 
In the AF’W method, space is divided into two regions: interstitial space, in which 

the wavefunctions are expanded in plane waves, and nonoverlapping spheres e n -  
tred on every atom, in which the wave function is a linear combination of spherical 
functions which are matched to the plane waves on the surfaces of the spheres (‘aug- 
mentation’). Notice that one-electron wavefunctions, rather than individual plane 
waves, are augmented in this formulation of the APW method. Furthermore, there 
is no need to construct a secular matrix during the optimization run and therefore 
no common basis set for all wavefunctions is needed. As a result, the linear ap- 
proximation [8] for the wavefunctions inside the mufin-tin spheres does not have 
to be made. The initial wavefunctions are constructed by diagonaIizing a muffin-tin 
Hamiltonian using a minimal KAO basis set, consisting of atomic orbitals fitted to a 
single Gaussian. 

In the present stage of the computer code, we do not allow the atoms to move 
during an optimization run yet So we do not yet perform a simultaneous molecular 
dynamics simulation. We do however obtain the forces on the atoms [7] in a partic 
ular atomic configuration so that in a follow up run the atoms may be moved in the 
direction of the forces. In this way, the lowest-energy configuration can be found. The 
present stage of the code can be thought of as the ‘APw-equivalent’ of the method 
used by Payne et al [13] with pseudopotentials and plane waves. Our relatively new 
method has been succesfully applied in the first-principles calculation of phonon fre- 
quencies in Si and Cu and of the geometry of the N, and H,O molecules [14]. ?b 
further test the code we performed an optimization of the hydrogen-phosphorus com- 
plex in crystalline silicon and compared with recent pseudopotential calculations 151; 
we obtain good agreement for the calculated forces and found the same configuration 
for the complex to be lowest in energy [15]. We also verified, both for the phonon 
frequencies in Si and the (H,P) complex in Si, that a substantially smaller number 
of plane waves suffices in the APW calculations compared wtth the pseudopotential 
calculations, which use plane waves to describe the wavefunctions everyhere. A 
short account of the present work on aluminium was given in [16]. 

In the remainder of this section, we discuss test calculations for bulk AI that were 
performed to establish parameters to be used in the defect calculations. The three 
most important parameters determining the accuracy of calculations in the present 
method are: R,, the radius of the (muffin-tin) sphere around each atom, Epw, the 
largest kinetic energy of plane waves included in the expansion of the wavefunction, 
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and Nsr, the number of special points in the irreducible wedge of the first Brillouin 
zone used to integrate over the Brillouin zone (BZ). R, may be chosen diierently 
for different types of atoms, but in such a way that no spheres overlap. Special points 
are obtained using the general Monkhors-Pack (MP) scheme [17] and integrations 
over the BZ are performed using the Gaussian-smearing method of Fu and Ho 1181, 
especially suited to treat metallic systems. It is obvious that the choice of R ,  and 
Epw are related; the larger R,, the smaller the interstitial region, and the fewer 
plane waves are needed to accurately describe the wavefunction in that region. 

P J H Denleneer and J M Soler 

Tsblr 1. TbIal cncrgy of bulk AI as a function of the number of plane waves pcr 
atom, Npw, in lhc basis sct. Epw is the kinetic cncrgy a h  which plane waves 
arc excluded from Ihc basis set. The apprwimate rdalion behvccn Npw and Epw 
is Npw = floEg/6rr2, where Slo is lhe volume pcr atom. All calculations arc for 
ec = 1.6 au, R- = 2.4 nu, and using 28 special k points ( s e  text). 

Epw (Ryd) NPW Em, (Rydatom) 

6 21 -482.93141 
8 42 -482.931 12 

10 59 -482.93448 
12 I1 -482.93110 
14 91 -482.93130 

We have established that for R, = 2 4  au bulk Al (FCC structure; one atom per 
primitive unit cell) is already accurately described using Epw = 6 Ryd, corresponding 
to about 27 plane waves per atom. In table 1, the total energy of bulk Al as a 
function of Epw is given for a lattice constant U, of 7.6 au, close to the experimental 
lattice constant. A MP special-point set with q = 6, corresponding to 28 k points in 
the irreducible part of the BZ, is used. The value for Erw = 10 Ryd is somewhat 
anomalous, a fact for which we offer no explanation. In table 2, the total energy 
and Fermi level for AI are given as a function of Nsr, the number of k points in 
the irreducible part of the 82, for sucoessively finer MP meshes in the B Z  These 
calculations are for uc = 7.6 au and with Epw = 6 Ryd. We argue that for q = 6, 
E,, and EF are calculated with sufficient accuracy. Even more so because we will 
be mainly interested in energy diferences rather than absolute energies. Of course 
the choice of the number of k points depends on the required accuracy and will be 
studied for each of the applications separately below. With q = 6 and E,, = 6 Ryd, 
we calculate an equilibrium lattice constant uq of 7.56 au and a bulk modulus B, 
of 0.87 Mbar 1191. The experimental numbers are: aq = 7.62 au and for B, values 
from 0.72 to 0.88 Mbar are reported [20]. Increasing Erw to 8 Ryd (equivalent to 
42 plane waves per atom) only changes aq to 7.54 au and Bu to 0.84 Mbar. 

We also performed a conventional pseudopotential plane waves calculation using 
a norm-conserving pseudopotential 1211 for Al for comparison. The results are: a - 

q. - 7.43 au and 8, = 0.86 Mbar, in agreement with the APW results. In anticipation 
of our aim to perform calculations for the self-interstitial point defect in AI, we also 
investigate the case that we have to choose R ,  as small as 1.89 au (the distance of 
a self-interstitial to a host atom is at most 3.8 au, for an interstitial in an octahedral 
interstitial site). For that case, we have to choose Epw as large as 12 Ryd. To 
establish this value, we calculate the formation energy at mnstant volume of a self- 
interstitial at the octahedral interstitial site E$ as a function of Erw The definition 
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'hblr 2. lblal energy and Fermi enagy of bulk Al as a funclion of the number of 
special k p i n @  N,,, used 10 p e ~ o r m  Brillouin mnc integrations. The paramcter g (see 
[17]) determines the number of intelvals into which the basis vMom of the reciprocal 
IaIllcs are sutdvided 10 form a mesh in recipraal spacc Nv is determined by g by 
N,p = g(g 4- 1)(g 4- 2)/12. All calculations are for as = 7.6 au, R m  = 2.4 au, and 
Epw = 6 Rfl (see text). 

g N,, EM (Rydlatom) EP (Ryd) 

2 2 -48291518 0.632 
4 10 -48292784 0.691 
6 7.8 -482.93141 0.677 
8 60 -48293210 0.681 

10 110 -48293172 0.685 
12 182 -48293158 0.684 
16 408 -48293151 0.682 

of this formation energy will be given in section 4, but for our present purpose it 
does not matter. The calculation is performed using supercells containing 16 (without 
interstitial) and 17 (with interstitial) atoms, as = 7.6 au, and 8 k points in the full 
BZ of the supercell. Although the number of k points is not sufficient for a reliable 
quantitative estimate of E$ (see section 4) it is sufficient for the present purpose of 
finding an adequate value for Epw to be used together with the choice R ,  = 1.89 au. 
The results are given in table 3. Choosing E,, = 12 Ryd (77 plane waves per 
atom) as a reasonable value to be used in conjunction with R ,  = 1.89 au, we find 
aq = 7.54 au and B, = 0.83 Mbar. Therefore, calculations for the interstitial will be 
much more computing intensive than for the vacancy, for which R ,  = 2.4 au and 
6 Ryd may be used. Our results using various parameter combinations and methods 
are compiled in table 4 and compared with pre\ious theoretical calculations [22, U] 
and experimental values. 

Table 3. Formation energy a1 constant volume of lhe self-interslitial defect in AI, mi::, 
as a function of kinetic energy cut-OK Epw (see text). E:;,! is calculated in a 16-atom 
supercell as Emt(17) - (17/16)Elor(16) (see also seclion 4). me calculations are for 
as = 7.6 au, R ~ ( T  = 1.89 au, and 8 k p i n &  in the full Brillouin Zone of Ihe supercell. 

6 -0.48 
8 1.06 

10 1.16 
12 1.02 
14 1.04 

From the calculated forces on the atoms in a doubled unit cell in which the 
atoms are frozen in with displacements corresponding to phonons at zone boundary 
X, the frequencies of the longitudinal L(X) and transversal T(X) phonons can be 
calculated [4]. Using Epw = 6 Ryd, R ,  = 2.4 au, and 45 (75) k points for L(X) 
("(X)) (equivalent to q = 10 for bulk Al; see table 2) we find phonon frequencies 
of vL(x) = 9.93 THz and +(x) = 5.67 THz. These results are in good agreement 
with the experimental numbers: vux, = 9.68 THz and z q x ,  = 5.81 THz. In table 5, 
we give results of calculations using larger Epw @ut smaller numbers of k points; 12 



8182 P J H Denteneer and J M Soler 

Tabk 4. Calculated ground-state pmpcnis  of Al (lattice conslant a- and bulk modulus 
Bo) using various methods and choices of paramclem, compared with experimental 
raUlLr 

M o w i  d ol ; KKR [22] 7 m  0.80 
P m n t  work; m, Epw = 6 Ryd, R m  = 2.4 au 756 0.87 
Present work; m, Epw = 8 Ryd, Rm = 2.4 au 753 0.84 
Present work; m, Epw = 12 Ryd, R m  = 1.89 au 755 0.83 
Lam and a h e n ;  normconseriing pscudoptcnlial [U] 7.58 0.72 
Pracnl work; normconserving pscudopotential 7.43 0.86 
Experiment 7.62 0.720.88 

for L(X) and 18 for T(X), equivalent to p = 6 for bulk AI). Although the calculated 
frequencies are somewhat sensitive to the number of plane waves and the number 
of k points, we argue that the forces are calculated with sufficient accuracy to find 
the equilibrium configuration of a set of atoms. For completeness we note that if we 

using norm-conserving pseudopotentials (with Epw = 24 Ryd and 45 
k points [19 "T' ) we find 9.52 TH& in reasonable agreement with the APW results, again 
confirming their reliability. 

Table 5. Calculated longitudinal and t r a ~ ~ e m a l  phonon frequencies at the mnc boundary 
p i n t  X of the BZ of Al, YI.(X) and q x ) ,  respectively, as a function of kinetic energy 
c u t 4  Epw (sec I&). The experimental results are Uken [mm [ul. The calculations 
arc for as = 7.6 au. R m  = 2.4 au, and using 12 (QX)) and 18 (T(X)) special k points 
in thc irreducible part of the Brillouin zone of the (doubled) unit cell in which the 
phonon modes are frozen in. 

E m  ( R Y ~  uyx) CTW q x )  (THZ) 

6 10.46 5.59 
8 10.19 5.48 
10 10.04 5.46 
12 9.91 5.43 
14 9.87 5.42 
Experiment 9.68 5.81 

We conclude that with the present method energies and forces in bulk AI can be 
computed with sufficient accuracy using modest numbers of plane waves and k points. 

3. Planar delects in aluminium 

Although the energies of stacking faults are in general veiy small (5-100 meV per 
unit cell of a fault layer), one of us has shown earlier that they can be accurately 
calculated from first principles [24]. In this approach, stacking faults along the [lll] 
direction are seen as the limiting structures of a series of polytypes. Polytypes are 
periodically repeated stacking sequences of atomic layers, in which all atoms have 
the same coordination as in the basic, unfaulted structure. With this point of view, 



Defect eneeetics in aluminium 8783 

FIgurr 1. Slacking hulls along the [ l l l ]  direction for PCC metals. In each (111) plane the 
atoms are amnged in equilateral lrianglef If in one plane the atom ~ccupy positions A, 
in the n a t  plane of atom along 11111 they ~n either occupy positions B or C and still 
be all six-fold coordinated. In a perfect PCC crystal svUcture the stacking sequence is 
ABCABC.. .; the intrinsic and extrinsic stacking faults and hvin-boundary have stacking 
sequences ABACABC. . ., ABCBCABC. . ., and ABWACBACB. . ., respectively. 

a systematic parametrization of the energies of polytypes in terms of interaction 
constants between layers allows for the calculation of stacking-fault energies. 

Smith et a1 have pointed out similarities between the A " N 1  model and the 
occurrence of polytypes [25]. Therefore it is conceivable that the energies of polytypes 
may be parametrized using: 

E = E  " - 5, csisi+l - J,  sisi+, - J3 s;s;+, - " ' (2)  
i 

where the summation is over layers. The connection with Ising spins is that a layer 
has Si = +1 or -1 depending on whether or not the layer is surrounded by layers 
as in the ideal, unfaulted, stacking sequence. The parameters J ,  (n = 0,1,2,. . .) 
are interaction energies between two layers a distance nd apart, where d is the layer 
thickness. Eo is the energy contribution, common to all polytypes, which results if all 
interactions between layers are disregarded. Total energies of all polytypes are easily 
expressed in the parameters Eo and J,, (n = 0,1,2,. . .) [24]. For semiconductors 
we have found that usually total energies (calculated from first principles) for three 
simple (possibly fictitious) polytypes suffice to extract stacking-fault energies in very 
good agreement with available experiments. The same approach is easily applied to 
stacking faults along [lll] in FCC metals. Blandin et ai have used similar reasoning 
before to calculate stacking-fault energies in metals using the nearly-free-electron 
approximation 1261. 

The unfaulted FCC structure of AI can be represented by a repeated stacking 
sequence along [ I l l ]  of three atomic layers: ABCABC. . . . The intrinsic stacking 
fault (ISF) is obtained by removing one atomic layer from the perfect sequence: 
ABCBCABCABC.. ., the extrinsic stacking fault (FSF) by inserting one atomic layer: 
ABACABCABC.. ., and the [ l l l ]  60' [ l l l ]  grain boundary or twin boundary (TWB) 
by reversing the stacking order at a certain point: . . .ABCABACB. . . (see figure 1). 
In [24], it is shown how the energy per unit cell in a layer for the ISF and FSF 
may be expressed in the interaction energies J,.  Using the stacking sequence given 
above a similar result is easily obtained for the TWB. Here, we only give the results: 
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ErsF = 45, + 45, + 45, + . . . 
EEsp = 4 4  + SJ, + SJ, + . . . 
& = 2.4 + 4J2 +6J3 + .. . 

(3) 

From (3) it is clear that if one assumes that the J, with n = 2,3, .  . . may be 
neglected compared to J1, one recovers the well known rule of thumb for stacking 
fault energies: Ersr = EEsF = 2ETwB [U]. This rule is apparently based upon 
the fact that the ISF and ESF contain two layers that are hexagonally packed (all 
other layers, like in the perfect structure, are cubically packed) and the TWB has only 
one layer that is hexagonally packed. If one also retains Jz, we obtain a distinction 
between the ISF and ESF, such that depending on the sign of J,, either the ISF 
(J, < 0) or the ESF (J2 > 0) has a higher formation energy. For Si, diamond [24], 
and AI (see below), we find J, < 0, but this does not always have to be the case. 
The relation EEsF = 2ETw, is only violated if J, cannot be neglected. 

Here we retain 5, and J, to be able to discriminate between all three stacking 
faults. In that case, J1 and 5, can be calculated from the differences in total energy 
between the three polytypes with repeat units ABC (FCC Al. polytype 3C), AB (HCP 
AI, polytype 2H), and ABCB (polytype 4H), having 3,2 and 4 atoms per (hexagonal) 
unit cell, respectively. The total energies for the three polytypes of Al are calculated 
with the parameters Epw = 6 Ryd and R, = 2.4 au and an increasingly dense 
sampling of the respective B Z  'Ib improve convergence of total-energy differences 
with increasing numbers of k points we select k point sets containing exactly the 
same k points for each of the three polytypes [28]. For this procedure it is essential 
to describe the polywe 3C in an hexagonal unit cell with 3 atoms, instead of the 
primitive, cubic, unit cell with 1 atom. Furthermore, one needs the generalization of 
the Monkhorst-Pack scheme for special k points given by MacDonald [29]. Moreover, 
we need a large number of k points since all three polytypes are metals and we need 
to calculate a reasonably accurate Fermi level. The results of these calculations are 
given in table 6. In our most accurate calculation, we use 240, 292 and 120 IC points 
in the irreducible parts of the BZ for 2H, 3C and 4H, respectively. These numbers 
correspond to a sampling of reciprocal space a factor of about 30 more dense than 
used in the bulk calculations of the previous section. We find that for large enough 
k point sets the Fermi energy (with respect to the average interstitial potential) is 
approximately equal for all three polytypes. 

For the energy difference between 2H and 3C, which equals 25, [24], we then 
find: 31.5 meV/atom. For the energy difference between 2H and 4H, which equals 
J1 - ZJ,, we find: 19.7 meV/atom. The 3C polytype is lowest and the 2H polytype 
highest in energy of these three. From calculations with smaller numbers of k points 
we estimate the error bar on these energy differences to be about 1 meV/atom. The 
fact that J1 = 15.7 meV and J2 = -20 meV suggests a posteriori that neglecting 
higher order interaction constants is a reasonable approximation. The signs and ratio 
of J1 and J, arc similar to those found for polytypes of silicon and carbon [24]. 

The stacking-fault energies yIsF, yESF, and yTwB most often considered in the 
literature are obtained by dividing the energies of (3) by +a:&, the area of a hexagon 
defining a unit cell in one layer, with a, the lattice constant of the corresponding 
FCC Structure. For consistency the nearest-neighbour (NN)  distances in all three 
polytypes have to be chosen equal to the N N  distance in bulk AI (= 5.4 au). 
Consequently, our calculated stacking fault energies do not include atomic relaxations 
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Table 6. %tal energies of polytypes 3C, ZH, and 4H of AI as a function of Brillouin- 
wne sampling. Enagies E are in Rydlsrom and energy differences 61 @eween 2H and 
3C) and 6h @elween 2H and 4H) are in meV/atom. The parameter qm determines 
thc numkr of intenals into which the basis vectors of the reciprocal lattice of the 
pol% 2H are subdibided 10 form a mesh in reciprocal space. For lhese calculations, 
a11 plytypes are desaibed in an hexagonal unit cell; the third component of qm 
determines the number of intelvals along the hexagonal axis. If = (yS,y.,yG), then 
the corresponding q ? ~  = (‘la.rsl$rc) and qw = (y.,y.,$yc). FOE 4H, a vector [0,0,1/y~l 
(coordinates wilh respect to reciprocal basis for 4H) is added to each k point if yon is 
odd lo obtain exactly the same k poinIs in all three cases (see tat) .  If 3 ye is not an 
integer no such equivalent k point set exists for 3 C  

qm 

(7,7,4) - - -482.93026 35.0 -482.93283 
(9S’,6) -48293010 30.1 -48292789 W.6 -482.92940 
(11,11,8) - - -482.92951 22.1 -482.931 13 
(15,15,10) - - -482.92928 20.9 -482.93082 
(19,19,12) -482.931 42 31.5 -482.92910 19.7 -482.93055 

near the fault. Such relaxations are believed to lower the calculated energies only 
by a few per cent. Using our calculated energy differences, we have: yIsr = 126 i 
12 mJ m-’, yESF = 108 -+ 11 mJ m-’, and yTWB = 54 -+ 6 mJ m-’, where we have 
indicated estimated error bars. The value of ylSF is in excellent agreement with the 
experimental result of 135 f 20 mJ m-’ [30]. In [U], an experimental value of 
75 mJ m-* for yTWB is given. 

We now discuss previous calculations. The results obtained by Vitek using an 
empirical pair potential for the interatomic interaction [31] are in good agreement 
with our first-principles results. He finds: 105, 95, and 55 mJ m-’ for the three 
fault energies. Recently, yTWB was calculated using a first-principles layer Korringa- 
Kohn-Rostoker method [32]. In that paper, the calculated rTWB of 118 mJ m-’ is 
considered to be in excellent agreement with an experimental result of 166 mJ m-’. 
However, in a later paper [33] the result of 118 mJ m-’ was corrected to be the 
fault energy of the ESF. For yIsF and yTWB energies of 124 mJ m-‘ and 56 mJ m-’, 
respectively, are reported, in excellent agreement with our results. The quoted exper- 
imental result of I66 mJ m-’ is for the ISF [27J. Very recently, stacking fault energies 
for AI were obtained using the LMTO-ASA method and large supercells [34]. The re- 
sults ( yJsF = 280-+40 mJ m-’, yESF - - 260 mJ m-’, and yTWB = 1 3 0 i  15 mJ m-’) 
are more than a factor of two larger than our results. Erroneously, good agreement 
with the value of 118 mJ m-’ for yTwB from [32] is claimed (see above). From the 
suggested reasons for the discrepancy between the mTO-ASA results and experiment, 
the effect of the finite size of the supercell and/or of the neglect of interactions be- 
tween the two faults is in our opinion the most likely one. In our approach, based 
on the connection with polytypes, the problem of finite supercells is to a large extent 
avoided. 

We conclude this section by observing that we have succeeded in calculating from 
first-principles stacking-fault energies in AI with greater accuracy than they can be 
obtained from experiments up to now. 
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4. Point defects in aluminium 

P J H Denteneer and J M Solei 

The vacancy and self-interstitial in AI are studied using N-atom supercells represent- 
ing bulk Al (N = 8, 16, 27). For the vacancy we remove one atom from the cell, for 
the interstitial we add one atom at the (most symmetric) octahedral interstitial site, 
where it has six-fold coordination. Of course one can consider other sites for the 
interstitial atom as well, but the octahedral-site interstitial is expected to deform least 
the host crystal Because the smallest deformations will lead to the largest possible 
choice for the muffin-tin radius Rm, the chosen configuration for the interstitial 
allows for the most accurate calculation (see section 2). We note that both from 
experiment and theory it is known that not the octahedral interstitial, but the 100- 
split interstitial, or 'dumbbell', is the lowestenergy configuration [35]. The formation 
energies of both interstitial defect configurations are expected to be of similar magni- 
tude. The removed (added) atom can be thought of to go to (come from) the surface 
of the crystal (see figure 2). We define the formation energies at constant volume of 
these point defects to be: 

N - 1  
N E;,: = Etot( N - 1; 0) - - E,t(N; Q) 

(4) 
E i n t  - N + 1  - E , , ( N C ~ ; R ) - - ~ S - E ~ ~ ~ ( N ~ S ~ ~ )  

where E,l( N; Sl) is the total energy of the N-atom ceU with total volume Sl. Note 
that we do not contract (expand) the cell around the vacancy (interstitial) in order 
to obtain the same volume per atom in the N-l ( N + l )  and N-atom cell (contrary 
to [lo]). Adopting the latter approach would provide an equally valid definition of 
the (constant volume) formation energy, which becomes equivalent to our definition 
in the large-N limit. Our approach is expected to give less sensitivity of calculated 
results with respect to cell size, since the immediate vicinity of the defect is a bcttcr 
representation of that of the isolated defect, because the interatomic distances are 
not related to the cell size. We emphasize that we do include relaxations of the atoms 
around the defect. 

Table 7. Vacancy formation energy a1 comlanl volume (in ev) as a function of all size 
and Brillouin-zone sampling. The numben of k points quoted from the scheme of (13 
are for the Cull 02 of the respective supercells; in aclual calculations they are reduced to 
a smaller number depending on the symmelry (perfeel cryftal or crystal wilh vacancy). 

cell size 
.. - .. 

NBZ 8 16 27 

8 0.62 0.90 0.98 
64 0.93 0.76 - 

216 0.83 - 
512 0.83 - - 

- 
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4.1. The vacancy 

For the vacancy we have calculated E;,: using various cell sizes up to N=27 and 
various k point sets [lq. Results are presented in table 7. We also tested the 
dependence of E;,: upon increasing the energy cut-off Epw; for all three. cell sizes 
E;,: never changed by more than 0.W5 eV by going from 6 to 8 Ryd. For the 
8-atom cell all forces are zero by symmetry, so that the atoms around the vacancy 
cannot be relaxed. All calculations are fully converged regarding self-consistency and 
with respect to the number of plane waves. Only for the 8-atom cell are we able to 
fully converge the result with respect to increasing the number of k points. From 
calculations in both the 16- and 27-atom cell, we find that relaxation only lowers E;,: 
by 0.10 eV. Our final result is therefore obtained as the converged result of the 8-atom 
cell corrected for relaxation: E;,: = 0.73f 0.10 eV. This result agrees very well with 
the value 0.76 eV obtained in the 16-atom cell with our largest k point set, where we 
do include relaxation. Despite Friedel oscillations in the effective interaction between 
ions, which can be very long ranged in simple metals, it is not necessary to use larger 
supercells than we do. The total energy and therefore the vacancy formation energy 
can be insensitive to these oscillations. Our results as well as those of 1111 indicate 
that the vacancy formation energy is indeed insensitive to the Friedel oscillations. 
This insensitivity can be understood from the work of Harrison and Wdh [36], where 
it is shown that the effective interaction between ions in simple metals when used to 
compute total energies may be represented by a screened Coulomb form which decays 
exponentially. The agreement of our final result for E;,: with the experimental result 
[37] of 0.66rtO.02 eV is very good, but these numbers may not be directly compared: 
experiment measures the formation enthalpy at constant pressure, AH,, at a high 
temperature (about 600 K in [37]), whereas this quantity only equals the formation 
energy at constant volume, AU,, for T = 0 (at which our calculation is valid). In 
[38], the following relation is derived for the formation of defects in general: 

A H ,  = AU,  - TcrpS2APv (5)  

where a,, is the linear expansion coefficient (at constant pressure), 0 the volume, 
and AP, the change in pressure upon formation of the defect (at constant volume). 
Evtrapolating either the experimental result to T = 0 or our calculated result to finite 
T (note that AU,  in general is temperature dependent [39]) is largely a matter of 
speculation and we will make no attempt here. Combining our method with molecular 
dynamics, enahling the introduction of temperature into the calculations, would open 
the way to a fully ab initio description of the thermodynamics of defects. Other recent 
studies find values for E?; ranging from 0.5 to 1.0 eV [lo, 11, 201. Our approach 
improves upon the latter studies in various aspects: in [ll], a large dependence upon 
the choice of pseudopotential was found and no relaxation of the atoms around the 
vacancy was taken into acu)unt. In [lo], a local pseudopotential was used, whereas an 
ab initio pseudopotential is non-local. The effect of the latter approbat ion remained 
to be investigated. In 1201, computational limitations prevented a full study of the 
numerical approximations involved. In the present calculation, no pseudopotentiah 
are used, all atomic relaxations are taken into acmunt, and the effects of all numerical 
approximations are scrutinized. 

With regard to relaxation around the vacancy, we find that the atoms closest to 
the vacancy move inward (the vacancy contracts) by 1.8% of the AI-AI distance in 
the bulk (d(Al-AI)). In contrast, a vacancy at a surface of AI expands because of 
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the tensile stress at the AI surface [MI. Although bonding in a semiconductor like 
Si is entirely different, the same phenomena occur: a vacancy in the bulk contracts 
(by about 3% of a bond length, lowering the energy by 0.1 ev), whereas one at 
the surface expands [41]. The formation energy of a vacancy in Si is much larger 
however: about 4.5 eV 

We have also calculated the migration energy at constant volume for the vacancy, 
E$. We have assumed that in the saddle-point configuration for the migration of a 
vacancy an AI atom is located halfway between the vacancy and the original position 
of this AI atom. The difference in energy between this configuration (after all the 
atoms have been allowed to relax in accordance with the calculated forces) and the 
relaxed vacancy then equals E:;. We find: E;; = 0.7f 0.2 eV, in good agreement 
with the experimental result of 0.62 eV [42]. In the relaxed saddle-point configuration, 
the (four) neighbouring AI atoms have moved from their lattice positions by 5.7% of 
d(AI-AI), lowering the energy by 0.4 eV with respect to the unrelaxed saddle-point 
configuration [43]. 

P J H Denteneer and J M Soler 

mcancy formation interstitial formation 
a t  constant d u m e  ot constant v ~ l u m e  

AP,<o bP" .o 
P L m  2. Schematic representation of the formation of point defects at constant volume. 
Vacancy formation proceeds by removing one atom from its lattice position and taking 
it to the surface of the crystal. The atoms surrounding the vacancy will move slightly 
towards the vacant site, but the total crystal volume is kept fmed. For %elf-interstitial 
formation, one atom is taken from the surface and brought IO an inlemtitial site. The 
neighbouring atoms will move away from the interstitial by a substantial fraction of the 
nearestaeighbour distance in the perfect crystal, but the total c y t a l  volume is again 
kept Iixed. I n  calculations of the formation energy. the defective crystal is described 
using a supercell (reprenented by the dashed box) containing the defect, but not the 
surface. ?he extra or missing atom is accounted for by scaling the perfect-cryual result, 
in which all atoms are equivalent, by the appropriate factor (equation (4)). 

Another interesting property of a defect is its formation volume at constant pres- 
sure, An,. For the vacancy we have: AS2, = R, + AR,,, where S2, is the volume 
per bulk atom and Anm, is the change in volume upon relaxation of the lattice con- 
stant after the vacancy has been formed. The first term accounts for the atom that has 
gone to the surface upon vacancy formation (see figure 2). By carefully comparing the 
volume at which the total energy is a minimum for a supercell without and with the 
(relaxed) vacancy, we obtain = -0.35R2,. Therefore, AR = 0.65n2,, again in 
very good agreement with the experimental value of 0.620, [44f We note that AR, 
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is a very sensitive quantity to compute; for instance, if we would assume that the 
16-atom supercell without vacancy has minimal energy for the same lattice constant 
as the (one-atom) primitive unit cell (using the same energy cut-off), we would find: 
An, = 0.51C2,. In fact, the 16-atom cell has minimal energy for us = 7.538 au (cf 
U, = 7.56 au for the primitive unit cell in section 2) and for the 15-atom cell (with 
one relaxed vacancy) the total energy is minimized for us = 7.482 au. 

4.2. The octahedral-site se[f-inferstitial 

As has been argued in section 2, calculations for the self-interstitial defect are much 
more computing intensive. Moreover, relaxations of the six atoms around the inter- 
stitial at the octahedral site are much larger than for the vacancy, so that calculations 
in a N = 8 cell (in which we can converge the BZ integrations) are not expected to 
be very reliable. We succeeded in performing a calculation of EkA in the N = 16 
cell using the same k point sampling as in our best N = 16 calculation for the 
vacancy, which was reasonable converged with respect to enlarging the number of 
k points. Our results are compiled in table 8. Our best estimate for the interstitial is: 
E$ = 3.4 eV The error bar on this result is estimated to be about 1 eV, but still the 
formation energy of this interstitial is a factor of about 5 larger than the formation 
energy of the vacancy. This result was to be expected on account of the fact that 
few experiments dealing with Al interstitials are known. We have provided the first 
quantitative estimate for E;:;. Interstitials at other sites are expected to have larger 
formation energies (except for the 'dumbell'). If this expectation is indeed borne 
out, the vacancy is the only principal point defect to be reckoned with in studies of 
atomic diffusion in Al. A recent calculation [I11 did not include relaxation of the 
atoms around the interstitial and found E;:: = 10 eV If in our calculation atomic 
relaxations are neglected we obtain: E;;: = 10.6 eV, close to the result of Ill]. As 
expected, relaxation is a big effect: an energy lowering of 7.2 e V  and displacement 
of the atoms closest to the interstitial of 14% of d(Al-Al). 

Teblr 8. Self-interstitial formation energy at constant volume (in ev) as a function of 
cell size and Brillouin-zone sampling. The numben of k points quoted from the scheme 
of [17] are for the full BZ of the respective supercells: in actual calculations they are 
reduced to a smaller number depending on the symmetry (perkcl crystal or crystal with 
interstitial). 

cell size 

NBZ 8 16 

8 - 1.0 
64 5.2 3.4 

We also calculated the formation volume (at constant pressure), which for the 
interstitial is given by: An, = 4" + AnreI. The first term now accounts for the 
atom that has come from the surface, whereas the second term is the change in volume 
upon forming the defect (at constant pressure). As for the vacancy, the total energy 
is minimized in a supercell (N = 16) both without and with the interstitial present. 
In the case with the interstitial, the relaxation of the atoms around the interstitial is 
kept tixed (while changing the lattice constant) at the relaxation the atoms undergo 
for a volume corresponding to a lattice constant of 7.6 au The forces on the atoms 
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never deviate from zero appreciably for the lattice constants investigated. The cell 
without interstitial has minimal energy for a, = 7.630 au and the cell with interstitial 
for a, = 7.854 au, so that we have: An, = 0.45n2, The latter result should be 
considered with some caution. In the first place, the calculations in a 16-atom cell 
are for N,, = 8 (see table 8), which is probably not sufficient. Also the larger 
relaxation induced by the interstitial (compared to the vacancy) may necessitate a 
larger supercell. %ken together with the fact that An, is a very sensitive quantity 
to compute (see above), we do not have a good estimate of its accuracy in this case. 
Moreover, one can derive the following relation [38]: 

P J H Denteneer and .I M Soler 

Anp = -RuTAPv (6) 

where R is the volume, nT the isothermal compressibility (which is the reciprocal 
of the bulk modulus Bo), and AP, the change in pressure upon formation of the 
defect at constant volume. Since the energy is lowered by increasing the volume after 
putting in the interstitial, AP, is positive (the pressure is positive after putting in 
the interstitial and zero before). Therefore, one would expect a negative an,. It is 
not inconceivable that our numerical approximations in this case render an accuracy 
consistent even with a negative ARp,,even though we find a rather large positive 
value. Note that the formation energy IS calculated with better accuracy. 

5. Conclusions 

Using a new method for electronic structure calculations which besides total energy 
also gives the quantum mechanical forces on the atoms, we have calculated the 
energies and other properties of a wide variety of planar and point defects in the 
simple metal Al. Test calculations on ground state properties and phonons in bulk 
Al establish the reliability of the method. The results for defects, some of which 
have not (or not accurately) been extracted from experiment yet, may form a testing 
ground for effective interatomic potentials to be used in atomistic simulations of more 
complicated mechanical processes in metals. We have shown that on account of its 
much lower formation energy the vacancy is likely to be the more prominent point 
defect in Al. If our method is extended to include molecular dynamics simulation of 
the ionic degrees of freedom as well, the full (i.e., also T #O) thermodynamics of 
defects can be studied, furthering our knowledge of the important effects of defem 
on material characteristics. 
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